Full Length Research Paper

Demand for inputs in tomato and cucumber: The case of Uzundere

Atilla Keskin*, Esra Kadanali and Vedat Dağdemir

Department of Agricultural Economics, College of Agriculture, Ataturk University, 25240, Erzurum, Turkey.

Accepted 15 February, 2010

The aim of this study was to determine the gross margins of cucumbers and tomatoes in greenhouses, price and cross elasticities and Morishima Technical Substitution Elasticity of the inputs such as labor, seedling, fertilizers and drugs, which play a key role in the production of these products in Uzundere District of Erzurum Province in Turkey. Model solutions, which were created by using Translog Cost Function were carried out by Seemingly Unrelated Regression (SUR). Price elasticity and cross elasticity of the inputs were calculated by using these model solutions. Similarly, Morishima Technical Substitution Elasticities of the inputs were obtained by the numerator equalities models. According to the study results, gross margins of cucumbers and tomatoes per m² were 5,000 TL and 3,303 TL, respectively. In addition, it was found that labor has the highest cost percentage within total cost.

Key word: Translog, cost, demand, tomato, cucumber, Turkey.

INTRODUCTION

Agricultural production is seasonal, while its consumption is continuous. In order to adapt the seasonal production to this continuous consumption, greenhouses, which use intensive way of production, are of great importance. Greenhouses are structures which enable farmers to grow culture plants economically in periods, in which climatic conditions are not appropriate to cultivate plants outdoors. They can provide developmental factors needed for crop production, and enable people to move around in them. Greenhouse cultivation area in Turkey is 47,774 ha, and greenhouse area is 30,575 ha. Distribution of greenhouse area in Turkey is approximately 65% in Antalya, 21% in Mersin, 7% in Mugla, and 7% in other provinces (Anonymous, 2005). Since greenhouse cultivation reduces the costs, usually it is used in a widespread manner in warm climate regions. Particularly in northern districts of Erzurum, in which the altitude decreases within short distances from the Centrum of Erzurum towards the Black Sea, vegetable cultivation in greenhouses becomes more and more widespread. In other words, climatic conditions in northern districts of Erzurum are much milder and this makes economical production in greenhouses possible.

Greenhouse cultivation in Uzundere district of Erzurum province increased in recent years, due to the suitability of the climatic conditions and public incentives for greenhouse cultivation. The fact that the land is rough and scarce in Uzundere district, greenhouse cultivation becomes advantageous in the region and makes it an important income source for the farmers. Most of the products produced in Uzundere are sold in local markets of Erzurum Centrum. But they are sold in Bayburt and Artvin provinces too. This provides and advantage for the customer who can buy fresh products in their local markets. Furthermore, greenhouse cultivation enables farmers to obtain more products from a unit area, increases the operational profit and makes it possible to reduce the hidden unemployment in the agricultural sector (Pezikoglu, 1999). In this context, it becomes important to calculate the production cost of the products cultivated in the greenhouse and to determine the economical results of the operational activities (Rad and Yarsi, 2005).

The aim of the study is to calculate the gross margins of cucumbers and tomatoes cultivated in greenhouses in Uzundere district of Erzurum province, price and cross elasticities and also Morishima technical substitution

*Corresponding author: E-mail: keskin.1@atauni.edu.tr. Tel: +90(442) 231 2592. Fax: +90(442) 231 2678.
elasticiy of the inputs for cost items such as labor, seedling, fertilizers and drugs, which play a key role in the production of these products. The main purpose of determining the cost and usage levels of physical production inputs is to be able to perform income and cost analyses of individual production activities which take place in agricultural enterprises (Ozkan et al., 2005). During the recent years, an increase is being observed in the trend of obtaining the economic criteria which are essential and mandatory for efficient use of the resources in agriculture from production functions. It is observed during the last 20 years that one of these functions, translog production function is being used in a widespread manner for the functional analyze of the agricultural production activity, especially in developed countries (Akcay and Esengun, 1999). Translog function was suggested by Christensen et al., and was used frequently to analyze the technological structure, which consists the base of the input demand and production. Binswanger, Kako, Ball, Chambers and Ray used Translog studies in time series and with agricultural cumulative data (Grisley and Gitu, 1985).

MATERIAL AND METHOD

Material
The data used in the study were obtained from the surveys performed in the enterprises in Uzundere district of Erzurum province, in which vegetables are cultivated in greenhouses. The data belong to the year 2008.

Method
There are 221 greenhouses registered in the Agriculture Directorate of Uzundere district of Erzurum province (Anonymous, 2008). Greenhouses which were between the range 240 and 1,500 m² were taken into consideration. Greenhouses smaller than 240 m² were considered as not having commercial value and the ones that were more than 1,500 m² were too few but they would affect the averages disproportionately. Thus, the total questionnaire number was determined as 85. All of the 85 enterprises were involved in cucumber cultivation, while enterprises which were involved in tomato cultivation was determined as 21.

Theoretical Framework
Translog cost function was used in the study. Model solutions were performed by Seemingly Unconcerned Regression (SUR) (Chiang, 1984). Price and cross elasticity of the inputs were calculated by using these model solutions. Similarly, Morishima Technical Substitution Elasticities of the inputs were obtained by the numerator equalities model. Translog cost function was described as it was in the equation number 1 (Chambers, 1988).

\[
\ln(m) = \alpha_0 + \sum_{j} \alpha_{ij} \ln(w_{ij}) + \frac{1}{2} \sum_{j} \sum_{j'} \gamma_{ijj'} \ln(w_{ij}) \ln(w_{ij'}) + \beta_i \ln(Q) + \beta_j (\ln(Q)^2) + \sum_{j} \eta_{ij} \ln(Q) \ln(w_{ij}) + \delta_{ij} \ln(\text{P}) + \sum_{j} \xi_{ij} \ln(\text{SW}) + \phi_i \ln(Q)(D)
\]

Cost numerator equalities provides the foundation for input demand and substitution elasticities determined in this study. After testing the usability of the numerator equalities model, price elasticities are calculated through the formulas no. 4 and 5:

\[
\psi_{ii} = \frac{\gamma_{ii}}{S_i} + S_i - 1
\]

\[
\psi_{ij} = \frac{\gamma_{ij}}{S_i} + S_i
\]

Abbreviations in the equation are: \( m \): Unit output cost, \( w_i \): Input prices vector (labor, seedling, fertilizers and drugs), \( Q \): Output quantity (productivity), \( D \): Dummy variable.

The cost numerator equality given in the equation No. 2, \( S_i \), shows the numerator of the varying production factor within the cost. In the equation, described as numerator equalities, the cross price estimators should be symmetrical and the total of cost numerators should be equal to 1 according to the Young theorem. These features call for the addition of the restrictions shown in the parameters in equation No. 3 to the model when predicting the cost function (Miran et al., 2002).

\[
\sum_i \alpha_i = 1; \gamma_{ij} = \gamma_{ji}; \forall e \sum \gamma_{ij} = \sum_i \beta_i = \sum_i \delta_{ik} = 0
\]

Cost numerator equalities provides the foundation for input demand and substitution elasticities determined in this study. After testing the usability of the numerator equalities model, price elasticities are calculated through the formulas no. 4 and 5:

\[
\psi_{ii} = \frac{\gamma_{ii}}{S_i} + S_i - 1
\]

\[
\psi_{ij} = \frac{\gamma_{ij}}{S_i} + S_i
\]

Allen and Morishima substitution elasticities can also be calculated using the same model. Allen partial substitution elasticity (\( \psi_{ij} \)), is calculated by dividing the cross price elasticity between these inputs to the cost numerator of the \( i \)-th input (\( S_i \)). Morishima input substitution elasticities were calculated to measure the variance in usage rates of any two inputs depending on the variation of the price ratios of these inputs (Tanrıvermiş, 2000).

SUR (Seemingly Unrelated Regression) was used as estimator in this study. In order to avoid the matrix to be singular in the estimation of the equality system, drug input was excluded from the model for the estimation of the cost numerator equality. Labor, seedling and fertilizer price indexes were used in the equation system. The parameters required for the drugs which remained out of the equation system were calculated from total and homogeneity constraints. SHAZAM Professional Edition was used as an econometric software in the study.

Findings and Discussion

Farmer and parcel information
61% of the producers included in the research in the study area were in 15 - 49 age range and 35% were primary school graduates. Greenhouse farming shows the characteristics of family enterprises in the area. Average number of family members in the enterprises was 4.7. For both cucumber and tomato, 51% of the working population in the greenhouses were males and 49% females. In enterprises cultivating cucumbers and tomatoes, the labor forces
were 2.98 and 2.62 MLU (MLU: Male labour unit. Here, a male 15-
49 eyars old is considered as 1 MLU, a female 15-49=0.75, a male
respectively. Cucumber is the main greenhouse product. Tomato is
in the second place. However, since tomato’s ripening time is
ripening time in cucumber cultivation is rather short, it can be ready
longer, the producers prefer predominantly cucumbers. Since
greenhouse cultivators were  owners of the properties.
tomatoes were 24.06 and 16.00 kg/m
parcel sizes for cucumbers and tomatoes were 1015 and 270 m
respectively. Gross margins per m
were calculated as 5.005 TL for
cucumber and 3.303 TL for tomato. Labor expenses were the biggest part in variable expense items. (Table 1).

**Numerator equalities SUR model**

In the study, the sensitivity of labor, seedling, fertilizer and drugs to the price changes in cucumber and tomato production was estimated via derived demand model. Derived demand model was described and estimated as the cost numerator equality system starting from translog cost function. It was understood that there is no positive value in Allen substitution elasticities eigenvalue vector in cucumber and tomato, and that the models show concavity. Thus, the models should be prepared in a way that unit cost should increase when input or inputs prices used in production also increase.

In order to accomplish cost minimization, cost function should also be a monotonic function. It was found that all estimation values obtained from the numerator equalities model in cucumber and tomato production were higher than zero (that is positive). Accordingly, it was determined that the models in both products were monotonic. That means, input substitution rates remain the same when the production increases. $R^2$ values of the equations regarding the cost numerators in cucumber and tomato production ranges between 37.00% and 48.50%, and between 58.30 and 69.20%, respectively (Table 2). It is understood that explanation levels for the horizontal cross section data are good in both products. The total of estimated cost percentages is equal to 1 and cross price estimators are the same. The highest rate among the cost numerators belong to the labor expenses, both in cucumber and tomato (Table 2).

Elasticities of input demand in cucumber and tomato, calculated by the cost numerator model, is given in Table 3. Self price elasticities of labor, seedling, fertilizer and drug of cucumber were estimated by cucumber input demand model as -0.170, -0.186, -0.371 and -0.467, respectively. Self elasticities of all inputs were inelastic. 10% increase in labor, seedling, fertilizer and drug prices will decrease the demands of these products by 1.70, 1.86, 3.71 and 4.67%, respectively.

According these values, in case of price increase inputs, the farmer will give up the input of drug the easiest, and this will be followed by fertilizer, seedling and labor, respectively. Labor prices had the hardest elasticity among the inputs used for cucumber production. The elasticities of the other inputs are also in low level. It means that, the reaction of the farmers who cultivate cucumbers in greenhouses to price changes are considerably low. Self price elasticities of labor, seedling, fertilizer and drug were estimated by tomato input demand model as -0.127, -0.342, -0.346 and -0.948 (Table 3). Self elasticities of all inputs were inelastic. 10% increase in labor, seedling, fertilizer and drug prices will decrease the demands of these products by 1.27, 3.42, 3.46 and 9.48%, respectively. According these values, in case of price increase of each input, the farmer will give up the input of drug the easiest, and this will be followed by fertilizer, seedling and labor, respectively. As it was in cucumber cultivation, labor prices had the hardest elasticity among the inputs used for tomato production. The values out of the main diagonal in Table 3 for cucumber and tomato are cross price elasticities.

Positive sign between to inputs shows substitution relationship between them, while negative sign between them shows complementary relationship. In case of a price increase of any input in cucumber cultivation, it can be substituted by another input in a very low rate. Accordingly, it can be assumed that each input is indispensable. The highest substitution was between drug and labor, followed by fertilizer-labor and seedling-labor. As it can be seen from Table 2, average cost percentage of labor in total cost for cucumber is very high. Therefore, an increase in labor price also increases the cost of cucumber. 10% increase in labor price increases seedling demand by 2.42%, while 10% increase in seedling price increases labor demand by 0.48%. 10% increase in labor price increases fertilizing demand by 3.74%, while 10% increase in fertilizer price increases labor demand by 0.50%. 10% increase in labor price increases drug demand by 5.99%, while 10% increase in drug price increases labor demand 0.973%. Price increases in drug, fertilizer and seedling increase labor demand. However, the effect of change in prices of these inputs on labor demand is very low, nearly zero. 10% increase in seedling price increases fertilizer demand by 0.17%, and 10% price increase in fertilizer increases seedling demand by 0.17%. These values show that, changes in seedling and fertilizer prices are very low, so that they can not change the demand to these inputs. All of minus signed cross elasticity coefficients are very close to zero. Accordingly, complementary relationship between the inputs is very low, nearly zero.

In case of a price increase of any input in tomato cultivation, it can be substituted by another input in a very low rate. Accordingly, it can be assumed that each input is indispensable. The highest substitution was between drug and labor, followed by seedling-labor and fertilizer-labor. As it can be seen from Table 2, average cost percentage of labor in total cost for cucumber is very high. Therefore, an increase in labor price also increases the cost of cucumber. 10% increase in labor price increases seedling demand by 2.37%, while 10% increase in seedling price increases labor demand by 0.42%. 10% increase in labor price increases drug demand by 2.26%, while 10% increase in fertilizer price increases drug demand by 2.26%, while 10% increase in fertilizer price increases drug demand by 2.26%, while 10% increase in labor price increases drug demand by 2.26%, while 10% increase in labor price increases drug demand by 2.26%. 10% increase in labor price increases drug demand by 2.26%. It can be seen that the effect of price changes of seedling, fertilizer and drug on labor demand is very low, nearly zero. Since the elasticities between seedling, fertilizer

### Table 1. Gross production value, variable expenses and gross margin for cucumber and tomato production Per m² Greenhouse (TL/m²).

<table>
<thead>
<tr>
<th></th>
<th>Cucumber</th>
<th>Tomato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross production values (1)</td>
<td>10.827</td>
<td>10.112</td>
</tr>
<tr>
<td>Variable expenses (2)</td>
<td>5.822</td>
<td>6.809</td>
</tr>
<tr>
<td>Labor expenses</td>
<td>3.042</td>
<td>3.633</td>
</tr>
<tr>
<td>Seedling</td>
<td>0.692</td>
<td>0.906</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>0.574</td>
<td>0.444</td>
</tr>
<tr>
<td>Drug</td>
<td>0.381</td>
<td>0.296</td>
</tr>
<tr>
<td>Other variable expenses</td>
<td>1.133</td>
<td>1.530</td>
</tr>
<tr>
<td>Gross margin (1 - 2)</td>
<td>5.005</td>
<td>3.303</td>
</tr>
</tbody>
</table>

Source: Original calculations
Table 2. Numerator equalsities model SUR solution for cucumber and tomato.

<table>
<thead>
<tr>
<th>Independent variable (Ln)</th>
<th>Dependent variable: Cost numerators cucumber</th>
<th>Dependent variable: Cost numerators tomato</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labor  Seedling  Fertilizer  Drug</td>
<td>Labor  Seedling  Fertilizer  Drug</td>
</tr>
<tr>
<td>Constant term</td>
<td>0.814* 0.332* -0.058 -1.088</td>
<td>0.094 0.354* 0.328* -0.776</td>
</tr>
<tr>
<td>Ln (Productivity)</td>
<td>-0.159 0.009 0.086* 0.064</td>
<td>0.086 0.008 -0.022 -0.072</td>
</tr>
<tr>
<td></td>
<td>(0.083) (0.047) (0.030) (0.001)</td>
<td>(0.091) (0.060) (0.056)</td>
</tr>
<tr>
<td>Ln (Labor price/drug price)</td>
<td>0.097* -0.061* -0.029* -0.007</td>
<td>0.108* -0.062* -0.047* 0.001</td>
</tr>
<tr>
<td></td>
<td>(0.034) (0.019) (0.012) (0.002)</td>
<td>(0.029) (0.018) (0.017)</td>
</tr>
<tr>
<td>Ln (Seedling price/drug price)</td>
<td>-0.061* 0.092* -0.011 -0.020</td>
<td>-0.062* 0.068* -0.005 -0.001</td>
</tr>
<tr>
<td></td>
<td>(0.019) (0.014) (0.007) (0.002)</td>
<td>(0.018) (0.015) (0.011)</td>
</tr>
<tr>
<td>Ln (Fertilizer price/drug price)</td>
<td>-0.029* -0.011 0.050* -0.010</td>
<td>-0.047* -0.005 0.053* -0.001</td>
</tr>
<tr>
<td></td>
<td>(0.012) (0.007) (0.008) (0.002)</td>
<td>(0.017) (0.011) (0.014)                   (0.011)</td>
</tr>
<tr>
<td>D (Dummy variable)</td>
<td>-0.052 0.020 0.005 0.027</td>
<td>-0.071 0.010 0.038 0.023</td>
</tr>
<tr>
<td></td>
<td>(0.032) (0.018) (0.011) (0.002)</td>
<td>(0.038) (0.025) (0.023)</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.373 0.485 0.370</td>
<td>0.637 0.585 0.692</td>
</tr>
<tr>
<td>Average Cost Numerator</td>
<td>0.689 0.136 0.092 0.083</td>
<td>0.722 0.128 0.095 0.055</td>
</tr>
</tbody>
</table>

Source: Original calculations.
Standart errors are shown in brackets. *: Important for 5%.

Table 3. Input demand elasticities.

<table>
<thead>
<tr>
<th></th>
<th>Cucumber</th>
<th>Tomato</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price elasticities</td>
<td>Morishima technical substitution elasticities (MES)</td>
</tr>
<tr>
<td>Labor</td>
<td>-0.170</td>
<td>Labor -0.127</td>
</tr>
<tr>
<td>Seedling</td>
<td>0.242</td>
<td>Seedling 0.342</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>0.374</td>
<td>Fertilizer 0.346</td>
</tr>
<tr>
<td>Drug</td>
<td>0.599</td>
<td>Drug 1.041</td>
</tr>
<tr>
<td></td>
<td>-0.109</td>
<td>Seedling 0.391</td>
</tr>
<tr>
<td></td>
<td>-0.022</td>
<td>Fertilizer 0.400</td>
</tr>
<tr>
<td></td>
<td>-0.467</td>
<td>Drug 1.041</td>
</tr>
</tbody>
</table>

Source: Original calculations.

and drug factors themselves are nearly zero, the substitution relationship between them is very low.

Morishima Technical Substitution Elasticities (MES) are shown in Table 3. As can be seen on the table, the substitution elasticities are higher than zero. Accordingly, it is understood that there is an incomplete substitution between all input pairs in cucumber cultivation. Here, technical substitution elasticity between seedling and labor was found as 0.428. If labor prices increase when seedling prices are stable, labor use will decrease, and more seedlings (the production factor with lower cost) will be used instead. The decrease in the use of labor will be 0.428% of seedling-labor use ratio. Similarly, the decrease in labor use will be 0.746% of fertilizer-labor use ratio, or 1.066% of drug-labor use ratio. A similar situation is also valid for the other inputs, and it appears that these inputs are substitutable inputs, one for the other, for cucumber. Substitution elasticities are higher than zero also in tomato cultivation (Table 3). Accordingly, it is understood that there is an incomplete substitution between all input pairs. Here, technical substitution elasticity
between seedling and labor was found as 0.579. If labor prices increase when seedling prices are stable, labor use will decrease, and more seedlings (the production factor with lower cost) will be used instead. The decrease in the use of labor will be 0.579% of seedling-labor use ratio. Similarly, the decrease in labor use will be 0.572% of fertilizer-labor use ratio, or 1.674% of drug-labor use ratio. A similar situation is also valid for the other inputs, and it appears that these inputs are substitutable inputs, one for the other, for tomato.

RESULTS

Gross margin calculated for cucumber is higher than the one calculated for tomato. The biggest part in variable expense items are labor expenses in both products. In cost numerators of both products, labor is followed by seedling, fertilizer and drug expenses, respectively. Self elasticities of labor, seedling, fertilizer and drug price were estimated by the cucumber input demand model as -0.170, -0.186, -0.371 and -0.467, respectively. Therefore, the reaction of farmers who cultivate cucumbers in greenhouses to price changes is considerably weak. Self elasticities of labor, seedling, fertilizer and drug price were estimated by the tomato input demand model as -0.127, -0.342, -0.346 and -0.948, respectively. According to these values, the input which the farmer will give up easiest when the price of the input itself increased is drug, followed by fertilizer, seedling and labor, respectively.

The highest substitution in cucumber cultivation is between drug and labor, followed by fertilizer-labor and seedling-labor. The highest substitution in tomato cultivation is between drug and labor, followed by seedling-labor and fertilizer-labor. Substitution relationship level between seedling, fertilizer and drug factors are very low. There is incomplete substitution between all input pairs in production of both cucumber and tomato.

REFERENCES